
1

MareNostrum User's Guide

Barcelona Supercomputing Center
Copyright © 2009 BSC-CNS

Table of Contents
1. Introduction .. 1
2. System Overview .. 2
3. Online Documentation .. 2

3.1. Resources on the BSC web page ... 2
3.2. Man pages ... 2

4. Connecting to MareNostrum ... 3
4.1. Login nodes ... 4
4.2. Transferring files .. 4
4.3. Graphical applications ... 5

5. File Systems ... 6
5.1. Root Filesystem .. 6
5.2. GPFS Filesystem .. 6
5.3. Local Hard Drive .. 7
5.4. HSM .. 7

6. Running Jobs .. 9
6.1. Classes .. 9
6.2. Submitting jobs .. 9

7. Software Environment .. 13
7.1. C Compilers ... 13
7.2. FORTRAN Compilers .. 14
7.3. Optimization .. 16
7.4. Debuggers .. 17
7.5. Software in MareNostrum ... 18
7.6. Numerical Libraries ... 18
7.7. Modules Environment .. 19

8. Acknowledgment in publications .. 21
9. Getting help .. 21
10. FAQ's .. 22
A. SSH .. 24

1. Introduction
This user's guide for the MareNostrum supercomputer is intended to provide the minimum amount
of information needed by a new user of this system. As such, it assumes that the user is familiar with
many of the standard aspects of supercomputing as the Unix operating system.

We hope you can find most of the information you need to use our computing resources: from
applications and libraries to technical documentation about MareNostrum; how to include references
in publications and so on. Please read carefully this document and if any doubt arises don't hesitate
to contact our support group at <support@bsc.es>

MareNostrum User's Guide

2

2. System Overview
MareNostrum comprises 2560 JS21 compute nodes (blades) and 42 p615 servers. Every blade has
two processors at 2.3 GHz running Linux operating system with 8 GB of memory RAM and 36 GB
local disk storage. All the servers provide a total of 280 TB of disk storage accessible from every
blade through GPFS (Global Parallel File System).

For additional technical documentation about MareNostrum you can follow this link:

http://www.bsc.es/plantillaA.php?cat_id=207

The networks that interconnect the MareNostrum are:

• Myrinet Network: High bandwidth network used by parallel applications communications.

• Gigabit Network: Ethernet network used by the blades to mount remotely their root file system
from the servers and the network over which GPFS works.

3. Online Documentation
Since system upgrades and enhancements occur on an ongoing basis, it is almost impossible to keep
hardcopy documentation up to date. We provide as much information as possible online through the
following facilities:

• BSC web page: http://www.bsc.es

• UNIX man pages

3.1. Resources on the BSC web page
Most of the basic information to use the MareNostrum system is provided in this document that you
are reading at this moment. This document is also available on the BSC web page. You can also find
on this document information about compilers, libraries, applications, operating systems, and all
other software installed on the machine.

The description of the different hardware components of MareNostrum supercomputer, its function
and a technical description of each can be found on the resources web page:

http://www.bsc.es/plantillaA.php?cat_id=200

3.2. Man pages
Information about most commands and software installed is available via the standard UNIX man
command. For example, to read about command-name just type on a shell inside MareNostrum:

usertest@login1:~> man command-name

which displays information about that command to the standard output.

If you don't know the exact name of the command you want but you know the subject matter, you
can use the -k flag. For example:

usertest@login1:~> man -k compiler

This will print out a list of all commands whose man-page definition includes the word 'compiler'.
Then you could execute the exact man command line to know about the exact command you were
looking for.

http://www.bsc.es/plantillaA.php?cat_id=207
http://www.bsc.es
http://www.bsc.es/plantillaA.php?cat_id=200

MareNostrum User's Guide

3

Just to know more about the man command itself, you could also type:

usertest@login1:~> man man

4. Connecting to MareNostrum
Once you have a login and its associated password you can get into MareNostrum system,
connecting to one of the next login nodes:

From mn1.bsc.es to mn4.bsc.es

You must use Secure Shell (ssh) tools to login into or transfer file into MareNostrum. We do not
accept incoming connections from protocols as telnet, ftp, rlogin, rcp, or rsh commands. Once you
are logged into MareNostrum you cannot make outgoing connections for security reasons.

To get more information about the secure shell version supported and how to get ssh for your
system (including windows systems) see Appendix A.

Here you have an example of logging into MareNostrum from a UNIX environment:

localsystem$ ssh -l usertest mn1.bsc.es
usertest's password:

 +--+
 | |
 | Welcome to MareNostrum |
 | |
 | - All home directories are in GPFS and quotas are enabled |
 | - Applications are located at /gpfs/apps |
 | - All users are encouraged to change their passwords |
 | - For further information read MareNostrum User Guide: |
 | http://www.bsc.es/media/859.pdf |
 | |
 | Please contact support@bsc.es for questions |
 | |
 +--+

usertest@login1:~>

As can be seen, you will be prompted for your password before access is granted. If you are on a
Windows system, you need to download and install a Secure Shell client to perform the connection
to the machine (See appendix A for more information).

Most of these applications are graphical and you will have to fill some information in some of
the fields offered, in the field 'Host name' or 'Remote Host name' you will need to introduce:
mn1.bsc.es. Then, enter your username and password as requested by the Secure shell client. After
this procedure you may be logged into MareNostrum.

The first time that you connect to the MareNostrum system secure shell needs to interchange some
initial information to establish the communication. This information consists of the acceptance of
the RSA key of the remote host, you must answer 'yes' or 'no' to confirm the acceptance of this key.

Please change your initial password after you login the first time into the machine. Also use a strong
password (8 characters, do not use a word or phrase from a dictionary and do not use a word that
can be obviously tied to your person). Finally, please make a habit of changing your password on a
regular basis.

If you cannot get access to the system after following this procedure, first consult Appendix A for
an extended information about Secure Shell, or you can contact us, (see section 9 to know how to
contact with us).

MareNostrum User's Guide

4

4.1. Login nodes
Once inside the machine you will be presented with a UNIX shell prompt and you'll normally be in
your home ($HOME) directory. If you are new to UNIX, you'll have to learn the basics before you
could do anything useful.

The machine in which you will be logged in will be one of the 12 login nodes of MareNostrum
(login1 .. login12). These machines act as front ends, and are used typically for editing, compiling,
preparation/submition of batch executions and as a gateway for copying data inside or outside
MareNostrum.

It is not permitted the execution of cpu-bound programs on this nodes, if some compilation needs
much more cputime than the permitted, this needs to be done through the batch queue system.

It is not possible to connect directly to the compute blades from the login nodes, all resource
allocation is done by the batch queue system.

4.2. Transferring files
There are three ways to transfer files to MareNostrum. From Unix systems, you can use secure copy
(scp) or secure ftp (sftp), both tools have the same syntax as the old and insecure tools such as rcp
(remote copy) and ftp. The third method users can use to transfer data is FTPS.

In order to increase the bandwith of massive data movements among the machines located at the
different RES sites, the use of FTPS (FTP + SSL) is proposed. FTPS protocol provides encrypted
authentication, but the data transfer is performed without ciphering, allowing a better network usage
by reducing the amount of cpu needed.

• Setting the FTPS client:

We propose GFTP as FTPS client, it can be found at /gpfs/apps/FTPS of the different RES
Machines.

Users can download it from: http://gftp.seul.org/ to deploy gftp at their local machines. Gftp has
to be compiled with ssl support. (hence, openssl-devel package is required to compile).

Compilation steps should be as follows:

./configure --prefix=[your_prefix] --with-ssl
make
make install

Depending on the configuration text and graphic versions will be created (gftp-text, gftp). In this
guide, we'll focus only in the text-based tool.

Once installed, peer certificate checking bas to be disabled by setting the "verify_ssl_peer key" to
0 at ~/.gftp/gftprc (verify_ssl_peer=0)

• Moving data with gftp:

Sites allowing FTPS transfers will provide one dedicated node where remote users must connect
to. Data transfers will always be in pull mode. At MareNostrum (Barcelona) this node is mn1-
ftps.bsc.es; at other sites, local support teams will provide this node when available.

The gftp session is started as follows.

~> gftp-text ftps://[username]@mn1-ftps.bsc.es

And authenticated with the password you use to access that machine.

MareNostrum User's Guide

5

Once authenticated, you'll be in an ftp-like environment with access to the different gpfs
filesystems (projects,scratch,home,apps), you can navigate through them with ls and cd, and
download / upload with get / mget / put / mput commands. Remove operations are restricted in
this environment for security reasons.

EXAMPLE: steps needed to transfer /gpfs/projects/bsc99 to the local site:

~> gftp-text ftps://[username]@mn1-ftps.bsc.e
gftp> lcd [your path]
gftp> cd /gpfs/projects/bsc99
gftp> mget *
gftp> quit

As it have been said before no connections are allowed from inside MareNostrum to the outside
world, so all scp and sftp commands have to be executed from your local machines and not inside
MareNostrum.

Here there are some examples of each of this tools transferring files to MareNostrum:

localsystem$ scp localfile usertest@mn1.bsc.es
usertest's password:

localsystem$ sftp usertest@mn1.bsc.es
usertest's password:
sftp> put localfile

These are the ways to retrieve files from MareNostrum to your local machine:

localsystem$ scp usertest@mn1.bsc.es:remotefile localdir
usertest's password:

localsystem$ sftp usertest@mn1.bsc.es
usertest's password:
sftp> get remotefile

On a Windows system, most of the secure shell clients comes with a tool to make secure copies or
secure ftp's. There are several tools that accomplishes the requirements, please refer to the Appendix
A, where you will find the most common ones and examples of use.

4.3. Graphical applications
You could execute graphical applications from the login nodes, to do that the only way is tunneling
all the graphical traffic through the Secure shell connection established.

You will need to have an Xserver running on your local machine to be able to show the graphical
information. Most of the UNIX flavors have an X server installed by default. In a Windows
environment, you will probably need to download and install some type of X server emulator. (see
appendix A)

The second step in order to be able to execute graphical applications is to enable in your secure shell
connection the forwarding of the graphical information through the secure channel created. This is
normally done adding the '-X' flag to your normal ssh command used to connect to Marenostrum.

Here you have an example:

localsystem$ ssh -X -l usertest mn1.bsc.es

For Windows systems, you will have to enable the 'X11 forwarding', that option normally resides
on the 'Tunneling' or 'Connection' menu of the client configuration window. (See appendix A for
further details).

MareNostrum User's Guide

6

5. File Systems
IMPORTANT: It is your responsibility as a user of the MareNostrum system to backup all your
critical data. We only guarantee a daily backup of user data under /gpfs/home and /gpfs/
projects.

Each user has several areas of disk space for storing files. These areas may have size or time limits,
please read carefully all this section to know about the policy of usage of each of these filesystems.

There are 3 different types of storage available inside a node:

• Root filesystem: Is the filesystem where the operating system resides

• GPFS filesystems: GPFS is a distributed networked filesystem which can be accessed from all the
nodes

• Local hard drive: Every blade has an internal hard drive

Let's see them in detail.

5.1. Root Filesystem
The root file system, where the operating system is stored doesn't reside in the blade, this is a NFS
filesystem mounted from one of the servers. To know in more detail about the structure of the
MareNostrum system please consult our website on the Resources link.

As this is a remote filesystem only data from the operating system has to reside in this filesystem. It
is NOT permitted the use of /tmp for temporary user data. The local hard drive can be used for this
purpose as you could read in section 5.3.

Furthermore, the environment variable $TMPDIR is already configured to force the normal
applications to use the local hard drive to store their temporary files.

5.2. GPFS Filesystem
The IBM General Parallel File System (GPFS) is a high-performance shared-disk file system that
can provide fast, reliable data access from all blades of the cluster to a global filesystem. GPFS
allows parallel applications simultaneous access to a set of files (even a single file) from any blade
that has the GPFS file system mounted while providing a high level of control over all file system
operations. These filesystems are the recommended to use with most jobs, because GPFS provides
high-performance I/O by "striping" blocks of data from individual files across multiple disks on
multiple storage devices and reading/writing these blocks in parallel. In addition, GPFS can read or
write large blocks of data in a single I/O operation, thereby minimizing overhead.

An incremental backup will be performed dailys only in the /gpfs/home and /gpfs/projects (not in /
gpfs/scratch).

These are the GPFS filesystems available in MareNostrum from all blades:

/gpfs/home: This filesystem has the home directories of all the users, when you log into
MareNostrum you start in your home directory by default. Every user will have their own home
directory to store the executables, own developed sources and their personal data. Quotas are in
effect that limit the amount of data that can be saved here, a default quota will be enforced to all
users.

The quota and the usage of space can be consulted via the quota command:

usertest@login1:~> quota -v

MareNostrum User's Guide

7

If you need more disk space in this filesystem or in any other of the GPFS filesystems, the
responsible of your project has to make a request for this extra space needed, specifying the
requested space and the reasons why it is needed. The request can be sent by email or any other way
of contact to the user support team as it is explained in section 9 of this document.

/gpfs/projects: In addition to the home directory, there is a directory in /gpfs/projects for each group
of users of Marenostrum. For instance, the group bsc01 will have a /gpfs/projects/bsc01 directory
ready to use. This space is intended to store data that needs to be shared between the users of the
same group or project. A quota per group will be enforced depending on the space assigned by
Access Comitee.

You can query the status of the space used in /gpfs/projects via the quota command, where you will
have to specify the group that you belong to:

usertest@login1:~> quota -v -g <GROUP>

All the users of the same project will share their common /gpfs/projects space and it is responsibility
of each project manager to determine and coordinate the better use of this space, and how it is
distributed or shared between their users. If a project needs more disk space in this filesystem or in
any other of the GPFS filesystems, the project manager has to make a request for this extra space
needed, specifying the space needed and the reasons why it is needed. The request can be sent by
email or any other way of contact to the user support team as it is explained in section 9.

/gpfs/scratch: Each MareNostrum user will have a directory over /gpfs/scratch, you must use this
space to store temporary files of your jobs during its execution. By default, files may reside for up to
7 days without modification in this filesystem, any older file might be removed. A quota per group
will be enforced depending on the space assigned.

/gpfs/apps: Over this filesystem will reside the applications and libraries that have already been
installed on Marenostrum. Take a look at the directories or to section 7 of this document to know
the applications available for general use. Before installing any application that is needed by your
project, first check if this application is already installed on the system. If some application that you
need is not on the system, you will have to ask our user support team to install it. Check section
9 how to contact with us. If it is a general application with no restrictions in his use, this will be
installed over a public directory, that is over /gpfs/apps so all users on MareNostrum could make
use of it. If the application needs some type of license and his use must be restricted, a private
directory over /gpfs/apps will be created, so only the required users of MareNostrum could make
use of this application. All applications on /gpfs/apps will be installed, controlled and supervised
by the user support team. This doesn't mean that the users could not help in this task, both can work
together to get the best result. The user support can provide his wide experience in compiling and
optimizing applications in the MareNostrum platform and the users can provide his knowledge
of the application to be installed. All that general applications that have been modified in some
way from its normal behavior by the project users' for their own study, and may not be suitable for
general use, must be installed over /gpfs/projects or /gpfs/home depending on the usage scope of the
application, but not over /gpfs/apps.

5.3. Local Hard Drive
Every blade has a local hard drive that can be used as a local scratch space to store temporary files
during executions of one of your jobs. This space is mounted over /scratch directory. The amount
of space within the /scratch filesystem varies from node to node (depending on the total amount
of disk space available). All data stored in these local hard drives at the compute blades will not
be available from the login nodes. Local hard drive data is not automatically removed, so each job
should have to remove its data when finishes.

5.4. HSM
HSM stands for Hierarchical Storage Management, and provides more than 3 PB of total space. It
will be mounted from login5 to login8 at /HSM/<group>/. Under this filesystem all the unsused data

MareNostrum User's Guide

8

is automatically moved to tapes and if some space is needed, the system will remove the unused
data because it has been previously saved.

The blocksize for this filesystem is 1 MB, so we strongly recommend to save large files in order to
optimize the use of that filesystem. If you need to save a large number of small files, they should be
saved in tar format all together.

To check the quotas and the space used in this filesystem you may use hquota. It must be executed
from one of the logins that have the HSM mounted (logins 5 to 8), so before running it you should
jump to one of them:

usertest@login4:~> ssh login8
usertest@login8:~> hquota
 HSM Quota for group <usertest>

 In use Soft limit Hard limit
 ---------- ------------- ------------
 Number of files: 3 100000 100100
 Space on tape: 2.20 GB 95.37 GB 104.90 GB

There are some special tools to simplify the transference between filesystems as well. They create a
batch job to execute the original command on queues to avoid the cputime limitation in interactive
sessions, and they can be run from any node in the cluster:

• htar: submits a tar command to queues.

Example 1. Taring data from /gpfs/ to /HSM

> htar -cvf /HSM/usertest/outputs.tar \
 /gpfs/home/usertest/usertest/OUTPUTS

• hcp: submits a cp command to queues. Remember to delete the data in the source filesystem once
copied to HSM to avoid duplicated data.

Example 2. Copying data from /gpfs to /HSM

> hcp -r /gpfs/home/usertest/usertest/OUTPUTS \
 /HSM/usertest/

Example 3. Copying data from /HSM to /gpfs

> hcp -r /HSM/usertest/OUTPUTS \
 /gpfs/home/usertest/usertest/

• hmv: submits a mv command to queues.

Example 4. Moving data from /gpfs to /HSM

> hmv /gpfs/home/usertest/usertest/OUTPUTS \
 /HSM/usertest/

Example 5. Moving data from /HSM to /gpfs

> hmv /HSM/usertest/OUTPUTS \
 /gpfs/home/usertest/usertest/

To check the state of these commands, you can use mnq, explained in the next section.

MareNostrum User's Guide

9

6. Running Jobs
Slurm+MOAB is the utility used at MareNostrum for batch processing support, so all jobs must
be run through it. This document provides information for getting started with job execution at
MareNostrum.

In order to keep the login nodes in a propper load, a 10 minutes limitation in the cpu time is set for
processes running interactively in these nodes. Any execution taking more than this limit should be
carried out through the queue system.

6.1. Classes
The user's limits are assigned automatically to each particular user (depending on the resources
assigned to the group he or she belongs) and there is no reason to explicitly set the #@class
directive. Anyway you are allowed to use the special class: "debug" in order to perform some fast
short tests. To use the "debug" class you need to include the mentioned directive in your job scripts

Table 1. Classes

Class Max CPUs Wall clock time limit

debug 64 10 min

interactive 6 1 h

The specific limits assigned to each user depends on the priority granted to the group. Users
granted with "high priority hours" will have access to a maximum of 1024 CPUs and a maximum
wall_clock_limit of 72 hours. For users with "low priority hours" the limits are 1024 CPUs and 24
hours. If you need to increase these limits please contact the support group.

• debug: This class is reserved for testing the applications before submitting them to the
'production' queues. Only one job per user is allowed to run simultaneously in this queue, and the
execution time will be limited to 10 minutes. Only a limited number of jobs may be running at the
same time in this queue.

• interactive: This class is reserved for executions which need to be interactive, i.e. a graphical
application, and demanding more time than the interactive cpu time limit in the nodes. There is a
wall clock limit of 1h for this queue, and it must be used from logins 2 to 4. The best way to use it
is through the "mninteractive" command, explained with more detail in the next section.

6.2. Submitting jobs
A job is the execution unit for the SLURM. A job is defined by a text file containing a set of
directives describing the job, and the commands to execute.

6.2.1. SLURM wrapper commands

These are the basic directives to submit jobs:

• mnsubmit <job_script>

submits a “job script” to the queue system (see below for job script directives).

• mninteractive <command>

Submits an interactive job, executing the command or applications specified as argument. The
user must be logged into login2 to 4, with the X11 forwarding active. The restrictions of the
interactive queue are detailed in the previous section.

MareNostrum User's Guide

10

• mnq

shows all the jobs submitted.

• mncancel <job_id>

removes his/her job from the queue system, canceling the execution of the job if it was already
running.

• checkjob <job_id>

obtains detailed information about a specific job, including the assigned nodes and the possible
reasons preventing the job from running.

• mnstart <job_id>

shows information about the estimated time for the especified job to be executed.

• mnhold -j <job_id>

Sets a block to the specified job. To release a job, the same command must be run with -r option.

6.2.2. Job directives

A job must contain a series of directives to inform the batch system about the characteristics of the
job. These directives appear as comments in the job script, with the following syntax:

@ directive = value

Additionally, the job script may contain a set of commands to execute. If not, an external script must
be provided with the 'executable' directive. Here you may find the most common directives:

@ class = class_name

The queue where the job is to be submitted. Let this field empty unless you need to use "interactive"
or "debug" queues.

@ wall_clock_limit = HH:MM:SS

The limit of wall clock time. This is a mandatory field and you must set it to a value greater than the
real execution time for your application and smaller than the time limits granted to the user. Notice
that your job will be killed after the elapsed period

@ initialdir = pathname

The working directory of your job (i.e. where the job will run). If not specified, it is the current
working directory at the time the job was submitted.

@ error = file

The name of the file to collect the stderr output of the job.

@ output = file

The name of the file to collect the standard output (stdout) of the job.

@ total_tasks = number

The number of processes to start.

@ cpus_per_task = number

MareNostrum User's Guide

11

The number of cpus allocated for each task. This is useful for hybrid MPI+OpenMP applications,
where each process will spawn a number of threads. The number of cpus per task must be between 1
and 4, since each node has 4 cpus (one for each thread).

@ tasks_per_node = number

The number of tasks allocated in each node. When an application uses more than 1.7 GB of memory
per process, it is not possible to have 4 processes in the same node and its 8GB of memory. It can be
combined with the cpus_per_task to allocate the nodes exclusively, i.e. to allocate 2, processes per
node, set both directives to 2. The number of tasks per node must be between 1 and 4.

@ nodeset = clos

For executions requiring 1024 or less cpus, it is possible to ask for nodes sharing the same clos
(switch Myrinet). This improves the communication performance of MPI applications when
experiencing problems with delays in the communications, as the message routing will be faster.

However, this restriction makes more difficult the start of the job, and thus, waiting times in queues
may be greatly increased. For this reason, this is only recommended to applications which would
benefit from the fact of being contained in the same switch; ie: communication intensive MPI
jobs. If you have any doubt or you are not sure whether your application can take advantage of this
feature, please contact with support@bsc.es.

@ mpi2 = 1

Every job running an MPI2 program must specify this directive in order to let it work properly.

@ tracing = 1

Every job using tracing or profiling tools must set this option.

@ x11 = 1

You can submit jobs applying for x-forwarding in the nodes. Those jobs can only be submitted via
login(5-8). To achieve this, you must meet the following requirements:

1. You must login to any login of MareNostrum from outside with ssh option "-X".

ssh -X user@mn1.bsc.es

2. Once inside login(1-4), you must switch to login(5-8) using ssh "-Y" option.

ssh -Y login5

3. Then, you have to submit a job with this directive on. To be able to use it, the system requires at
least a full exclusive node. There are two ways of asking for a full node, depending on the kind
of job you are submitting:

@ total_taks = 4
@ tasks_per_node = 4

OR

@ total_tasks = 1
@ cpus_per_task = 4

Note that in spite of requesting 4 tasks or 4 threads, the aplication might use only 1 cpu.

MareNostrum User's Guide

12

Example of X11 script:

#!/bin/bash
@ job_name = test_xclock
@ initialdir = .
@ output = xclock_%j.out
@ error = xclock_%j.err
@ total_tasks = 4
@ tasks_per_node = 4
@ x11 = 1
@ wall_clock_limit = 00:30:00

/usr/X11R6/bin/xclock

There are also a few SLURM environment variables you can use in your scripts:

Table 2. SLURM environment variables

Variable Meaning

SLURM_JOBID Specifies the job ID of the executing job

SLURM_NPROCS Specifies the total number of processes in the job

SLURM_NNODES Is the actual number of nodes assigned to run
your job

SLURM_PROCID Specifies the MPI rank (or relative process ID)
for the currnet process. The range is from 0-
(SLURM_NPROCS-1)

SLURM_NODEID Specifies relative node ID of the current job. The
range is from 0-(SLURM_NNODES-1)

SLURM_LOCALID Specifies the node-local task ID for the process
within a job

SLURM_NODELIST Specifies the list of nodes on which the job is
actually running

6.2.3. Examples

Example for a sequential job :

#!/bin/bash
@ job_name = test_serial
@ initialdir = .
@ output = serial_%j.out
@ error = serial_%j.err
@ total_tasks = 1
@ wall_clock_limit = 00:02:00
./serial_binary

Examples for a parallel job :

#!/bin/bash
@ job_name = test_parallel
@ initialdir = .
@ output = mpi_%j.out
@ error = mpi_%j.err
@ total_tasks = 56
@ wall_clock_limit = 00:02:00
srun ./parallel_binary

MareNostrum User's Guide

13

The job would be submitted using:

usertest@login1:~/Slurm/TEST> mnsubmit ptest.cmd

7. Software Environment

7.1. C Compilers
In MareNostrum you can find this C/C++ compilers :

xlc / xlC -> IBM XL C/C++ Enterprise Edition version 10.1

man xlc
man xlC

gcc /g++ -> GNU Compilers for C/C++, Version 4.1.2

man gcc
man g++

All invocations of the C or C++ compilers follow these suffix conventions for input files:

.C, .cc, .cpp, or .cxx -> C++ source file.

.c -> C source file

.i -> preprocessed C source file

.so -> shared object file

.o -> object file for ld command

.s -> assembler source file

By default, the preprocessor is run on both C and C++ source files.

These are the default sizes of the standard C/C++ datatypes on MareNostrum

Table 3. Data types

Type Length (bytes)

bool (c++ only) 1

char 1

wchar_t 2

short 2

int 4

long 4 / 8 (64 bit mode -q64)

float 4

double 8

long double 8

7.1.1. Distributed Memory Parallelism

Invoking the script "mpicc" or “mpiCC”, enables the program for running across several nodes of
the SP. Of course, you are responsible for using a library such as MPI to arrange communication
and coordination in such a program. Any of the mpi compilers sets the include path and library
paths to pick up the MPI library.

MareNostrum User's Guide

14

% mpicc a.c -o a.exe
% mpiCC a.C -o a.exe

7.1.2. Shared Memory Parallelism

The IBM compilers with the extension _r invokes the thread safe version of compiler , for example
xlc and xlc_r . It should be used when any kind of multi-threaded code, like OpenMP, is being built.

The IBM C and C++ compilers support a variety of shared-memory parallelism. OpenMP
directives are fully supported by the IBM C and C++ compilers when one of the invocations with _r
suffix is used.

xlc_r -qsmp=omp for C, and xlC_r -qsmp=omp for C++.

usertest@login1:~> xlc_r -qsmp=omp -o exename filename.c
usertest@login1:~> xlC_r -qsmp=omp -o exename filename.C

For mixed codes with MPI + OPENMP you need to execute the mpicc / mpiCC scripts with the
Thread safe version of xlc/xlC.

usertest@login1:~> mpicc -qsmp=omp -o test.exe test_mpi-OMP.c
usertest@login1:~> mpiCC -qsmp=omp -o test.exe test_mpi-OMP.C

7.1.3. Automatic Parallelization

The IBM C compiler will attempt to automatically parallelize simple loop constructs. Use the option
"-qsmp" with one of the _r invocations:

% xlc_r -qsmp a.c

7.1.4. 64 bit addressing

Both the IBM C and C++ compilers can support 64 bit addressing through the -q64 option. Using
this option causes all pointers to be 64 bits in length and increases the length of long datatypes from
32 to 64 bits. It does not change the default size of any other datatype. The default mode for both
compilers is 32 bit addressing. The following points should be kept in mind if -q64 is used:

If you have some object files that were compiled in 32-bit mode and others compiled in 64-bit mode
the objects will not bind. You must recompile to ensure that all objects are in the same mode.

Your link options must reflect the type of objects you are linking. If you compiled 64-bit objects,
you must also link these objects with the -q64 option.

7.1.5. Optimization

The level optimization that we recommend for MareNostrum (PowerPC 970-MP) is :

-O3 -qstrict -qtune=ppc970 -qarch=ppc970 -qcache=auto

7.2. FORTRAN Compilers
In MareNostrum you can find this compilers :

xlf / xlf90 / xlf95 -> IBM XL FORTRAN Enterprise Edition for PowerPC Version 12.1

man xlf
man xlf90
man xlf95

gfortran -> GNU Compilers for FORTRAN, Version 4.1.2

MareNostrum User's Guide

15

man gfortran

By default, the compilers expect all FORTRAN source files to have the extension ".f", and all
FORTRAN source files that require preprocessing to have the extension ".F". To change this
behavior, you can use the "-qsuffix" option:

% xlf90_r -qsuffix=f=f90:cpp=F90 file1.f90 file2.F90

This command will compile files ending in ".f90", and preprocess and compile files ending in
".F90". By default, the compilers with FORTRAN 77 defaults require fixed form FORTRAN
source. Compilers with FORTRAN 90 defaults require free form FORTRAN source. To change this
behavior, use either the -qfree=f90, or -qfixed=72 option:

% xlf90_r -qfixed=72 filename.f
% xlf_r -qfree=f90 filanem2.f

The file filename.f is compiled under the assumption that it is written in 72 column (using a number
other than 72 is allowed) FORTRAN 77 source form, and the file filename2.f is compiled assuming
it is written using the FORTRAN 90 free form.

To provide data to the preprocessor, such as defining a macros etc., use the following syntax:

% xlf_r -WF,-DSINGLE a.F

This command will preprocess the files a.F, passing the option "-DSINGLE" to the cpp command.

The default sizes of some of the datatypes can be changed with the "-qrealsize" and "-qintsize"
options:

% xlf90_r -qrealsize=8 -qintsize=8 a.f

The sizes of pointers are changed via the "-q64" option, by default the option is -q32 (pointers of 32
bits)

7.2.1. Distributed Memory Parallelism

The scripts mpif77 and mpif90 allow to use the MPI calls to get parallelism

% mpif77 a.f -o a.exe
% mpif90 -qsuffix=f90 -qfree=f90 a.f90 -o a.exe

7.2.2. Shared Memory Parallelism

xlf_r / xlf90_r / xlf95_r

This invokes the thread safe version of xlf. It should be used when any kind of multi-threaded code,
like OpenMP, is being built.

OpenMP directives are fully supported by the IBM C and C++ compilers when one of the
invocations with _r suffix is used.

% xlf_r -qsmp=omp

usertest@login1:~> xlf_r -qsmp=omp -o exename filename.f

7.2.3. Automatic Parallelization

The IBM Fortran compiler will attempt to automatically parallelize simple loop constructs. Use the
option "-qsmp" with one of the _r invocations:

% xlf_r -qsmp a.c

MareNostrum User's Guide

16

7.2.4. 64 bit Addressing

The IBM FORTRAN compilers can support 64 bit addressing through the -q64 option. Using this
option causes all pointers to be 64 bits in length and increases the length of long datatypes from
32 to 64 bits. It does not change the default size of any other datatype. The default mode for both
compilers is 32 bit addressing. The following points should be kept in mind if -q64 is used:

• If you have some object files that were compiled in 32-bit mode and others compiled in 64-bit
mode the objects will not bind. You must recompile to ensure that all objects are in the same
mode.

• Your link options must reflect the type of objects you are linking. If you compiled 64-bit objects,
you must also link these objects with the -q64 option.

7.3. Optimization
The level optimization that we recommend for MareNostrum (PowerPC 970-MP) is :

-O3 -qstrict -qtune=ppc970 -qarch=ppc970 -qcache=auto

Table 4. GNU Compilers (gcc-v4.1.2 /gfortran) Summary

Optimizations • -O0 (Do not optimize. Default)

• -O (Optimizes generated code)

• -O2 (Optimize even more)

• -O3 (Aggressive optimization)

32 / 64 bits • -m32 (default)

• -m64

Optimization for the PPC970-FX processor • -mcpu=970

• -mtune=970

VMX support • -maltivec

• -mabi=altivec (need to include thealtivec.h
file)

OMP and threads • OpenMP NOT SUPPORTED

• -lpthreads

Debug flags • -g (produce debugging information)

• -pg (generates extra code to write profile
information suitable for gprof)

MPI Compile with mpicc/mpiCC or mpif77/mpif90
and export the variable environment MP_CC,
MP_CXX, MP_FC, MP_F90

export MP_CC=gcc
export MP_FC=gfortran
mpicc test_mpi.c -o test
mpif77 test_mpi.f -o test

*the default object mode is 64 bits in mpi
wrappers (mpicc/mpif77/mpif90)

MareNostrum User's Guide

17

Table 5. IBM Compilers for PPC64 (IBM XLC-v10.1 / XLF / XLF90 v12.1)
Summary

Optimizations • -qnooptimize (Do not optimize)

• -O (Optimizes generated code. Default)

• -O2 (Same as -O) -O3 (Performs some
memory and compile-time intensive
optimizations)

• -O4 (agressive optimizations) -O5 (high
aggressive optimization)

32 / 64 bits • -q32 (default)

• -q64

Optimization for the PPC970-FX processor • -qarch=ppc970

• -qtune=ppc970

VMX support -qaltivec

OMP and threads -qsmp=omp

Debug flags • -g (produce debugging information)

• -pg (generates extra code to write profile
information suitable for gprof)

MPI Compile with mpicc/mpiCC or mpif77/mpif90
and export the variable environment MP_CC,
MP_CXX, MP_FC or MP_F90.

export MP_CC=xlc
export MP_FC=xlf
mpicc test_mpi.c -o test
mpif77 test_mpi.f -o test

*the default object mode is 64 bits in mpi
wrappers (mpicc/mpif77/mpif90)

7.4. Debuggers
Parallel Debuggers:

• Allinea's DDT: For more info about DDT please visit:

http://www.allinea.com/index.php?page=48

Current version: 4.2.1

Binary: /gpfs/apps/DDT/2.4.1/bin/ddt

Usage: In order to run DDT you must take into account that in MareNostrum there are no specific
nodes/queue to do debugging, so any job to debug must be sent to queues as any other usual task.
In the case of DDT you must configure the software to use the SLURM batch system. This is
done by starting DDT from the command line and then click on "Run and Debug a Program".
A new window will appear letting you to introduce, among other options, the binary name
to debug as well as the number of processors. Here you will find an entry called "Options..."
followed by a button "Change...". Click this button and select slurm in the drop down menu
"MPI Implementation". The last thing to do to complete DDT's setup in MN is to click on "Job

http://www.allinea.com/index.php?page=48

MareNostrum User's Guide

18

Submission" in the left panel of the same window as before. Here are three important things:
"Submit command" which must be set to mnsubmit; "Cancel command" which must be set to
mncancel; and the last thing is to select the "Submission template file". This file is very important
because this will be the file used to submit the job being debugged to the batch system. Here
select: /gpfs/apps/DDT/2.4.1/templates/run.qtf. This template must fit must of your needs.
Anyhow, you can always copy this file to your home directory, modify it as needed and change
the latter selection to point to your new template file. And this is it, now click on Submit to start
debugging. This setting should be automatically saved so you won't need to reconfigure DDT
next time you use it.

• RogueWave's TOTALVIEW:

Current version: 8.7.0-7

Binary: /gpfs/apps/TOTALVIEW/totalview

Usage:Again, as said before, there is needed a template submission file in order to submit the job
to the batch system.

You can use the following script and modify it as needed:

#!/bin/bash
@ job_name = TVD_MN
@ initialdir = .
@ output = mpi_%j.out
@ error = mpi_%j.err
@ total_tasks = <PUT HERE THE TASKS TO USE>
@ wall_clock_limit = <PUT HERE THE WALL CLOCK TIME>
@ x11 = 1
@ tracing = 1

/gpfs/apps/TOTALVIEW/totalview -mpi SLURM \
-np <NUMBER OF TASKS> -starter_args \
<other srun args> program_name -a <program args>

IMPORTANT: You must submit the job from one of the login nodes: 5 to 8; otherwise you will
get an X11 error. In addition remember to log into MareNostrum (mn1,mn2,mn3 or mn4) using
the "-X" ssh option and then jump to the other login with the "-Y" option. See Section 6.2.2 for
more information on the x11 directive.

Serial Debuggers:

• /usr/bin/gdb

• /usr/bin/gdb64

• /usr/bin/gdb32

• /gpfs/apps/DDD

7.5. Software in MareNostrum
All software installed at MareNostrum can be found at /gpfs/apps/. At the following link you will
find a list of all installed software and a brief descritpion:

http://www.bsc.es/plantillaC.php?cat_id=472

7.6. Numerical Libraries
All listed libraries can be found at /gpfs/apps/ except ESSL (/usr/lib) and MASS (/opt/ibmcmp/
xlmass/4.3/)

MareNostrum User's Guide

19

Table 6. Summary of numerical libraries available in MareNostrum

ATLAS Versions 3.5.1 and 3.6.0 with ALTIVEC

BLACS

BLAS Version 1.0.0

BOOST Versions 1.34.1 and 1.36.1

ESSL/PESSL Versions ESSL 4.1 and PESSL 3.2

CFITSIO Version March 2006

FFTW Versions 2.1.5(default), 3.0.1 and 3.1.1

GLPK Version 4.8

GNU-GSL Versions 1.6 and 1.9

GOTO Optimized for PPC970

HDF4 Version 4.1r5

HDF5 Versions 1.4.4 and 1.6.5

IOAPI Version 2.2

LAPACK Version 3.0

LP_SOLVE Version 5.1

MASS Version 4.1

NCARG Version 4.4.1

NETCDF Versions 3.6.0, 3.6.1 and 3.6.2

7.7. Modules Environment

The Environment Modules package provides for the dynamic modification of a user's environment
via modulefiles. Each modulefile contains the information needed to configure the shell for an
application or a compilation. Modules can be loaded and unloaded dynamically and atomically, in
an clean fashion. All popular shells are supported, including bash, ksh, zsh, sh, csh, tcsh, as well as
some scripting languages such as perl.

http://modules.sourceforge.net/

The first step in order to get the first envoronment loaded is to load BSC module.

module load bsc

Then, some default modules will be loaded and a set of available modules will be added.

This coherent set of software packages are divided into five categories:

• Environment: modulefiles dedicated to prepare the environment, for example, get all necessary
variables to use mpi2 to compile and even run programs

• Tools: useful tools which can be used at any time (php, perl, ...)

• Applications: High Performance Computers programs (CPMD, NAMD, ...)

• Libraries: Those are tipycally loaded at a compilation time, they load into the environment the
correct compiler and linker flags (FFTW, LAPACK, ...)

• Compilers: You can play with differents compilers and versions in this package (c, c++, fortran,
java, ...)

MareNostrum User's Guide

20

7.7.1. Modules tool usage

This seccion will explain a Quick Guide for the Modules environment usage at MareNostrum.

If you run "module help", you will be able to see all module commands. More information in
module(1) manpage.

Modules Release 3.1.6 (Copyright GNU GPL v2 1991):
Available Commands and Usage:
 + add|loadmodulefile [modulefile ...]
 + rm|unloadmodulefile [modulefile ...]
 + switch|swapmodulefile1 modulefile2
 + display|showmodulefile [modulefile ...]
 + avail[modulefile [modulefile ...]]
 + use [-a|--append]dir [dir ...]
 + unusedir [dir ...]
 + update
 + purge
 + list
 + clear
 + help[modulefile [modulefile ...]]
 + whatis[modulefile [modulefile ...]]
 + apropos|keywordstring
 + initaddmodulefile [modulefile ...]
 + initprependmodulefile [modulefile ...]
 + initrmmodulefile [modulefile ...]
 + initswitchmodulefile1 modulefile2
 + initlist
 + initclear

The most important commands are: list, avail, load, unload, switch and purge

• module list shows all the modules you have loaded:

% module list
Currently Loaded Modulefiles:
 1) c++/10.1 3) fortran/12.1
 2) c/10.1 4) mode/64

• module avail shows all the modules that user is able to load:

% module avail
------------ environment ------------
compilerwrappers/no mpi2/no
compilerwrappers/yes(default) mpi2/yes(default)
mode/32 oldcompilers/yes(default)
mode/64(default)
------------ compilers ------------
c++/10.1(default) c/8.0
java/1.4(default) c++/8.0
fortran/10.1 java/1.5
c/10.1(default) fortran/12.1(default)
------------ libraries ------------
blas/4(default) fftw/3
mass/4(default) blassmp/4(default)
fftw/3.0.1 netcdf/3(default)
essl/4(default) fftw/3.1.1
scalapack/1.7(default) esslsmp/4(default)
hdf5/1.6(default) fftw/2.1.5(default) lapack/3.0(default)

MareNostrum User's Guide

21

------------ tools ------------
emacs/21(default) omniorb/4.0(default)
tcl/8.4(default) globus/4.0(default)
openssh/3(default) tk/8.4(default)
gmake/3(default) perl/5.8(default)
totalview/8(default) hpm/2.5(default)
python/2.4(default) nedit/5(default)
python/2.5
------------ applications ------------
cpmd/3.11(default) cpmd2cube/jan05
namd/2.6(default) cpmd2cube/apr06(default)
lammps/22Jan08(default)

• module load let user load the necessary environment variables for the selected modulefile
(PATH, MANPATH, LD_LIBRARY_PATH...)

% module load fftw
load fftw/2.1.5 (CFLAGS,FFLAGS,LDFLAGS)

• module unload removes all environment changes made by module load command:

% module unload fftw
remove fftw/2.1.5 (CFLAGS,FFLAGS,LDFLAGS)

• module switch acts as module unload and module load command at same time:

% module load fftw
load fftw/2.1.5 (CFLAGS,FFLAGS,LDFLAGS)
% module switch fftw fftw/3.2.2
switch1 fftw/2.1.5 (CFLAGS,FFLAGS,LDFLAGS)
switch2 fftw/3.2.2 (CFLAGS,FFLAGS,LDFLAGS)
switch3 fftw/2.1.5 (CFLAGS,FFLAGS,LDFLAGS)
ModuleCmd_Switch.c(243):VERB:4: done
% module list
Currently Loaded Modulefiles:
 1) /fftw/3.2.2

8. Acknowledgment in publications
If you want to include any BSC acknowledgment in publications you can use some of the following:

["The simulations have been done in the supercomputer MareNostrum at Barcelona Supercomputing
Center - Centro Nacional de Supercomputación (The Spanish National Supercomputing Center)"]

["The author thankfully acknowledges the computer resources, technical expertise and assistance
provided by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación."]

9. Getting help
In addition to our online information tools described in section 3, BSC provides to users excellent
consulting assistance. User support consultants are available during normal business hours, Monday
to Friday, 09 a.m. to 18 p.m. (CEST time).

User questions and support are handled at:

support@bsc.es If you need assistance, please supply us with the nature of the problem, the date and
time that the problem occurred, and the location of any other relevant information, such as output

MareNostrum User's Guide

22

files. Please contact BSC if you have any questions or comments regarding policies or procedures.
Our address is:

Barcelona Supercomputing Center – Centro Nacional de Supercomputación

C/ Jordi Girona, 31, Edificio Capilla

08034 Barcelona

10. FAQ's
10.1. How can I get some help

The best way to get help is to email us at: <support@bsc.es>

10.2. How do I know the position of my first job in queue?

You can use the command:

mnstart <job_ID>

shows information about the estimated time for the especified job to be executed.

10.3. How can I see the status of my jobs in queue?

The wrappers commands mnq and checkjob provide you information about your jobs in
queues:

mnq

shows all the jobs submitted by your user.

checkjob <job_ID>

obtains detailed information about a specific job.

10.4. What is the default obejct mode compilation in MareNostrum?

It depends on the compiler used. If you use the XL compilers or the GNU compilers the
default object mode is 32 but with the mpi wrappers as mpicc the default object mode is 64.
You can also use the options -m64 or -m32 with GNU compilers and -q64 or -q32 with XL
compilers explicitly.

10.5. What version of MPI is currently available at MareNostrum?

Currently the default MPI version is mpich-mx, implementing MPI-1 standard. Additionally,
mpich2-mx, which implements MPI-2 is also available at /gpfs/apps/MPICH2. In order to use
it, some environment variables must be set before compiling:

 export PATH=/gpfs/apps/MPICH2/mx/default/bin/:$PATH
 export MP_IMPL=anl2

Also, remember to add the following directive in your job scripts:

 # @ mpi2 = 1

10.6. Which compilers are available at MareNostrum?

You can find the XL compilers from IBM: xlc, xlC, xlf, xlf90, xlf95 (along with the thread
safe versions xlc_r, xlC_r, xlf_r, xlf90_r, xlf95_r) and the GNU compilers gcc, g77, g+
+. OpenMP is fully supported by IBM compilers when _r sufix is used. There also exist

MareNostrum User's Guide

23

wrappers useful when compiling MPI applications: mpicc, mpiCC, mpif77, mpif90. By
default, this wrappers will use the IBM compilers but you can modify this behavior setting
some environment variables properly:

 export MP_CC=gcc
 export MP_CXX=g++
 export OBJECT_MODE=64

The Versions available for these compilers are: xlc v. 10.1; xlf v. 12.1; gcc v. 4.1.2; gfortran v
4.1.2

10.7. What options are recommended to compile in MareNostrum?

The recommended options to compile in MareNostrum for IBM compilers are:

-O3 -qstrict -qtune=ppc970 -qarch=ppc970 -qcache=auto

10.8. Should I be careful wih the memory consumption of my jobs?

Yes, you should. Each one of the MareNostrum Blades has 8 Gb of RAM. shared by two
(dual core) processors. Up to 90 % of this memory can be consumed for user jobs, while, at
least, 10 % has to be available for the Operating System and daemons. According to that, you
must limit the memory consumption of your job to 1.8 Gb per Process (which is 7.2 Gb per
Blade when there is one task per processor).

10.9. Where should I install programs common to all the members of my project group?

Your should install programs accessible to all your group members in the filesystem /gpfs/
projects/ (All the groups will have a directory such as /gpfs/projects/<gropu_id>).

10.10.Where should I store temporary data?

You can use the local hard disk of the blade (/scratch) to store temporary data for your jobs.
However, you must make sure all this data is deleted when the job finishes.

10.11.Is there any way to make my jobs wait less in queue before running?

You must tune the directive #@ wall_clock_limit to the expected job duration. This value will
be used by the batch system to decide when to schedule your job, so, shorter values are likely
to reduce waiting time; However, notice that when a job exceeds its wall_clock_limit will be
canceled, so, it is recommended to work with an small security margin.

10.12.How can I improve the transfer rate from my computer to MareNostrum?

There exists a pacth for SCP that can improve transfer rates in high bandwith, high latency
connections. This patch has only to bo applied in the client side. For more information about
this patch please visit http://www.psc.edu/networking/projects/hpn-ssh/ [http://www.psc.edu/
networking/projects/hpn-ssh]. Before applying this patch PLEASE contact the support team at
<support@bsc.es>

10.13.How can I know how much time I have consumed?

There will be a web page with your activity time consumption upgraded weekly. You will
receive information from the support team about how to access this page.

10.14.Should I be careful with the Input / Output over parallel filesystem (GPFS)?

Parallel Filesystem can be a bottleneck when different processes of one job are writing
to GPFS along the execution. In this kind of jobs, one possible way to improve the job
performance is to copy the needed data for each job to the local scratch at the beginning and

http://www.psc.edu/networking/projects/hpn-ssh
http://www.psc.edu/networking/projects/hpn-ssh
http://www.psc.edu/networking/projects/hpn-ssh

MareNostrum User's Guide

24

copy back to gpfs at the end, (with this scheme, most of I/O will be performed locally). This
scheme is also recommended for massive sets of sequential jobs.

10.15.How can I use GM Myrinet protocol with my MPI applications?

Myrinet GM protocol is no longer available at MareNostrum. MX should work for you.

A. SSH
SSH is a program that enables secure logins over an insecure network. It encrypts all the data
passing both ways, so that if it is intercepted it cannot be read. It also replaces the old an insecure
tools like telnet, rlogin, rcp, ftp,etc. SSH is a client-server software. Both machines must have ssh
installed for it to work.

We have already installed a ssh server in our machines. You must have installed an ssh client
in your local machine. SSH is available without charge for almost all versions of Unix. BSC
recommend the use of OpenSSH client that can be download from http://www.openssh.org, but any
client compatible with SSH version 2 can be used.

In windows systems BSC recommend the use of putty. It is a free SSH client that you can download
from http://www.putty.nl/. But you can also, any client compatible with SSH version 2 can be used.

In the next lines we will describe how to install, configure and use a ssh client under Windows
systems.

Once the client has been installed, it is needed to fix some settings. At least it is necessary to

• Select SSH as a default protocol

• Select port 22

• Specify the remote machine and username

For example with putty client:

Figure A.1. Putty client

http://www.openssh.org
http://www.putty.nl

MareNostrum User's Guide

25

This is the first windows that you will see at putty startup. Once finished, press the “Open” button.
If it is your first connection to the machine, your will get a Warning telling you that the host key
from the server is unknown, and will ask you if you are agree to cache the new host key, press Yes.

Figure A.2. Putty certificate security alert

IMPORTANT: If you see this warning another time and you haven't modified or reinstalled the ssh
client , please, don't log in , and contact with BSC support.

Finally, a new window will appear asking for your login and passwd:

Figure A.3. MareNostrum login

To transfer files to or from MareNostrum you need a secure ftp (sftp) o secure copy (scp) client.
There are several different clients, but as previously mentioned, BSC recommend the use of putty
clients for transferring files: psftp and pscp. You can find it at the same web page as putty (http://
www.putty.nl/ [http://www.putty.nl]).

Some other possible tools for users requiring graphical file transfers could be:

• WinSCP: Freeware Sftp and Scp client for Windows (http://www.winscp.net)

• SSH: Not free. (http://www.ssh.org)

http://www.putty.nl
http://www.putty.nl
http://www.putty.nl
http://www.winscp.net
http://www.ssh.org

MareNostrum User's Guide

26

Figure A.4. psftp screenshot

Example of using psftp:

As you can see, first it asks for the machine name (mn1.bsc.es), and then for the username and
passwd. Once you are connected, it's like a Unix command line.

With command help you will obtain a list of all possible commands. But the most useful are:

• get file_name : To transfer from MareNostrum to your local machine.

• put file_name : To transfer a file from your local machine to marenostrum.

• cd directory : To change remote working directory.

• dir : To list contents of a remote directory.

• lcd directory : To change local working directory.

• !dir : To list contents of a local directory.

Example of using pscp:

First of all you need a command windows were you will execute the pscp.exe

Figure A.5. step 1

MareNostrum User's Guide

27

Figure A.6. step 2

Figure A.7. step 3

In step 3 you can see two examples: copying files from your local machine to MareNostrum, and
from MareNostrum to your local machine. The syntax is the same that cp command except that for
remote files you need to specify the remote machine:

Copy a file from MareNostrum:

pscp.exe YourUserName@mn1.bsc.es:remote_file local_file

Copy a file to MareNostrum:

pscp.exe local_file YourUserName@mn1.bsc.es:remote_file

In order to start remote X applications you need and X-Server running in your local machine. Here
is a list of most common X-servers for windows:

• Cygwin/X: http://x.cygwin.com

• X-Win32 : http://www.starnet.com

• WinaXe : http://labf.com

• XconnectPro : http://www.labtam-inc.com

• Exceed : http://www.hummingbird.com

The only Open Source X-server listed here is Cygwin/X, you need to pay for the others.

Once the X-Server is running run putty with X11 forwarding enabled:

http://x.cygwin.com
http://www.starnet.com
http://labf.com
http://www.labtam-inc.com
http://www.hummingbird.com

MareNostrum User's Guide

28

Figure A.8. Putty X11 configuration

